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Abstract. We present BeRGeR: the first asynchronous geometric rout-
ing algorithm that guarantees delivery of a message despite a Byzan-
tine fault without relying on cryptographic primitives or randomization.
The communication graph is a planar embedding that remains three-
connected if all edges intersecting the source-target line segment are
removed. We prove the algorithm correct and estimate its message com-
plexity.

1 Introduction

Geometric routing, also called geographic routing, routing uses node locations
to transmit a message from the source to the target node. Nodes may either
obtain their coordinates from GPS devices or compute virtual coordinates [1–4].
Geometric routing has several attractive features. Nodes do not need to store
network topology information beyond their immediate neighbors. Moreover, such
routing may be stateless as nodes do not have to retain information after for-
warding a packet. Compared to flooding-based ad hoc routing algorithms [5,6],
geometric routing is more resource-efficient.

Geometric routing may therefore be used in cases where maintaining more
extensive routing information is not practicable. It may operate in environments
with high topological volatility such as vehicular networks [7] or large collections
of resource-poor devices such as wireless sensor networks [8].

Despite the claim of hostile environment applicability, little research has been
done on fortifying geometric routing against faults using geometric routing tech-
niques themselves. In this paper, we address this issue.

Geometric Routing. The elementary form of geometric routing is greedy. It
can be used on either a planar or a non-planar graph embedding.

In greedy routing, the packet is forwarded to the neighbor with the closest
Euclidean distance to the target. However, greedy routing fails if it reaches a local
minimum. A local minimum is a node that does not have an immediate neighbor
closer to the target. To recover from a local minimum and guarantee message
delivery, packets are sent to traverse faces of a planarized subgraph [9]. Finding
a maximum planar subgraph of a general graph is NP-hard [10]. However, for
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certain graphs, the task may be solved efficiently. A graph is unit-disk if a pair
of its nodes u and v are neighbors if and only if the Euclidean distance between
them is no more than 1. Such a graph approximates a wireless network. In a unit-
disk graph, a connected planar subgraph may be found by local computation at
every node using Relative Neighborhood or Gabriel Graph [11–14].

A sequential geometric routing algorithm, such as the classic GFG/GPSR [11,
13], routes a single packet in the greedy mode until a local minimum is encoun-
tered. The algorithm then switches to recovery mode, which involves traversing
the faces of a planar subgraph of the original communication graph. Specifically,
the algorithm traverses the faces that intersect the line segment that connects
the source and the target.

Algorithms such as GFG/GPSR have a problem of face traversal direction
choice. A face may potentially be traversed in two directions: clockwise and
counter-clockwise. Face traversal may be inefficient if its traversal direction is
selected inappropriately: the traversal distance may be long in one direction
and short in the other. GOAFR+ [15] finds the shorter traversal direction by
reversing it once the packet reaches a pre-determined ellipse containing source
and target nodes.

A concurrent geometric routing algorithm CFR [16] sends multiple packets to
traverse the faces intersecting the source-target line in both directions in parallel.
This naturally selects the shortest face traversal direction.

Byzantine Fault Tolerance. A Byzantine node [17,18] may behave arbitrarily.
This is the strongest fault that can affect a node in a distributed system. A
reputation-based approach [19,20] is considered to deal with Byzantine faults.
In such an approach, a node deviating from the algorithm may be marked as
faulty and avoided by its neighbors. However, a faulty node may actively resist
reputation compromise, for example by accusing other nodes of faults or waiting
until its malicious influence causes maximum damage. Hence, in general, such
approaches may only alleviate rather than eliminate the problem.

The power of the faults may also be mitigated with cryptography [17,21,22]
or randomization [23,24]. Synchrony assumptions may help with fault handling
as well [25]: if packet transmission may be delayed only for a finite amount of
time, then fault information may be obtained from lack of packet receipt. In a
completely asynchronous system, such information is not available.

Cryptography may be too expensive for resource poor nodes, the source of
true randomness may not be achievable and synchrony may be impossible to
guarantee. If none of these primitives are available, the solution requires that
the number of correct processes be large enough to overwhelm the faulty ones.

The complexity of Byzantine fault handling increases if the network is not
completely connected. In this case, nodes may not communicate directly; they
have to rely on intermediate nodes to forward the packets. Faulty nodes may
tamper with such forwarding. To counter such faulty behavior, packets are sent
along alternative routes. To enable this, the network should be sufficiently con-
nected. In general topology, message transmission is possible only if the network
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is 2x + 1-connected [17,26,27], where x is the maximum number of Byzantine
faults.

In this paper, we study Byzantine-robust geometric routing in asynchronous
networks. We do not use cryptography, randomization or reputation. Instead, we
use distributed geometric routing to bypass the faults.

Related Work. Sanchez et al. [19] and Pathak et al. [20] use both cryptographic
and reputation-based approaches to secure geometric routing. Adnan et al. [28]
propose to secure geometric routing through pairwise key distribution. Boulaiche
and Bouallouche [29] use message authentication codes to prevent message tam-
pering. Maurer and Tixeuil [30] consider containing faulty Byzantine nodes in
control zones such that messages will be sent there only with the authentication
form border nodes. Zahariadis et al. [31] propose a reputation-based approach to
geometric routing security. Several papers discuss counteracting spurious loca-
tions reported by faulty nodes to secure geometric routing [32–34]. Recently, the
problem of consensus has been explored in the geometric setting [35]. Zaz and
Nesterenko [36] consider Byzantine-robust geometric routing but offer no solu-
tion to the problem. To the best of our knowledge, no Byzantine-robust asyn-
chronous geometric routing algorithm without cryptography, randomization or
reputation has been proposed.

Several related problems have been addressed with concurrent geometric rout-
ing. In this paper, we consider unicasting: sending a message from a single source
to a single target. Alternatively, in multicasting, the same message is delivered
to a set of nodes in the network [37]. Sequential geometric multicasting algo-
rithms [38–40] optimize message transmission routes by forwarding the same
packet to multiple targets for a part of the route. MCFR [41] concurrently sends
packets along all the appropriate faces achieving faster delivery at the expense of
a greater number of transmitted packets. Another related problem is geocasting;
in this problem, the source needs to deliver messages to every node in a partic-
ular target area. There are several sequential geocasting algorithms [11,37,42].
Adamek et al. [43] present a concurrent geocasting solution. None of these algo-
rithms consider Byzantine tolerance.

Our Contribution. We present BeRGeR, an asynchronous unicast concurrent
geometric routing algorithm that handles a single Byzantine fault. We assume
the source and target nodes are connected by three internally node-disjoint paths
that do not intersect the source-target line, formally prove BeRGeR correct under
this assumption, and analyze its message complexity.

2 Preliminaries

Communication Model. A finite connected graph G is embedded in a geo-
metric plane. Two nodes may not share the same coordinates. We, therefore,
use node coordinates for both navigation and node identification. Two nodes
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adjacent to the same edge are neighbors. Each node knows its own coordinates
and the coordinates of its neighbors. Neighbors communicate by passing packets.
The communication is bi-directional, so the graph G, is undirected. The packet
transmission is FIFO, reliable and asynchronous. We assume Lamport’s “oral
messages” model [17] where the message is not signed but the packet recipient
always correctly identifies the sending neighbor.

Nodes are either correct or faulty. A correct node operates according to the
specified algorithm. A faulty node is Byzantine: it may behave arbitrarily includ-
ing sending packets, dropping received packets or not communicating at all.

If a node sends a packet without receiving it first, the node originates the
packet. A node forwards a packet if it receives it and then sends it to another
node. If a node forwards a packet to more than one neighbor, the node splits the
packet. If a node receives but does not forward the packet, it drops the packet.
We assume that a faulty node drops all packets that it receives and originates
all packets that it sends. The case of a faulty node forwarding a packet correctly
is equivalent to dropping the packet and originating an identical packet.

Message Transmission, Source, Target. A message is the gainful content
to be transmitted by a sequence of forwarded packets. An arbitrary source node
s ∈ G is to transmit a message ms to another arbitrary target node t ∈ G.
Besides the message, a packet may carry the source and target coordinates as
well as other auxiliary information.

To simplify the presentation, we assume that s and t are not neighbors. For
our purposes, the message content is immaterial provided that two messages can
be compared for equality. The target may receive the message from multiple
neighbors, the target delivers the message once it passes correctness checks. For-
warding a packet with the same message creates a message path. Consider two
message paths from node u to node v. These paths are internally node-disjoint
if the only nodes the paths share are u and v.

Planarity, Faces, Traversal. An embedding of a graph is planar if its edges
intersect only at nodes. For short, we call such a planar embedding a planar
graph. In a planar graph G, a face is a region on the plane such that any pair of
its points can be connected by a continuous curve inside the face. If the graph is
finite, then the area of all but one face is finite. The finite area faces are internal
faces and the infinite area face is the external face.

To traverse a face of a planar graph, the packets are routed using right- or
left-hand-rule. Consider a node v ∈ G that receives a packet from its neighbor
u. In the right-hand-rule, v forwards the packet to the next clockwise neighbor
after u. In the left-hand-rule, v forwards the packet to the next counter-clockwise
neighbor after u. We call the obtained traversal paths respectively right and left
and denote them R and L. The right path traverses an internal face counter-
clockwise and the external face clockwise. The left path traverses the internal
and external faces in the opposite direction to the right path.
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Let G − st be the graph G, without the edges intersecting the source-target
line segment st. The green face is the union of faces that intersect st. In other
words, the green face is the unique face that contains segment st in G− st. This
green face in G − st may be either internal or external. A green node is a node
adjacent to the green face. The source and target are thus green nodes. Given
a green node k, the k-blue face is a union of non-green faces adjacent to k. A
k-blue node is a non-green node adjacent to the k-blue face.

Fig. 1. A graph G, violating the Triconnectivity Assumption. Even though the graph
itself is three-connected, G − st is disconnected.

The Byzantine-Robust Geometric Routing Problem. An algorithm that
solves the Byzantine-Robust Geometric Routing Problem delivers the message
ms sent by the source to the target subject to the following three properties:

Validity: if the target delivers message mt, then mt = ms;
Liveness: the target eventually delivers mt;
Termination: every packet is forwarded a finite number of times.

Fault and Connectivity Assumptions. We consider a solution to the prob-
lem with at most one faulty node f ∈ G. We assume that s and t are correct.

The Byzantine node may originate a spurious message or stop the correct
message from propagating. Thus, there need to be at least 3 node-disjoint paths
to bypass the faulty node [26]. Hence, we consider 3-connected graphs.

Finding internally node-disjoint paths is difficult even if the graph is 3-
connected. Our idea is to spatially separate them: one path uses the left-hand-
rule traversal of the green face G − st the other—right-hand-rule. To achieve
this, when forwarding the message, each green node ignores the edges that inter-
sect st. However, in general, this may eliminate potential paths to the target or
leave the graph entirely disconnected. See Fig. 1 for an example. To prevent such
disconnect, we posit the following graph connectivity assumption:

Assumption 1 (the Triconnectivity Assumption). G − st is 3-connected.
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3 BeRGeR Description

In this section we present BeRGeR: a Byzantine-Robust Geometric Routing
algorithm that solves the Reliable Message Delivery Problem with a single faulty
node in a connected planar graph subject to the Triconnectivity Assumption.

Algorithm Outline. The algorithm operates as follows. The source concur-
rently sends two packets, called cores, to traverse the green face in the opposite
traversal directions. That is, the source sends a left core and a right core.

A green node, i.e. a node adjacent to the green face, may be faulty. The faulty
node may send a core with a spurious message. To prevent this, the target waits
to receive both cores with matching messages before delivering their message.
In this case, however, a faulty green node may drop the packet altogether and
prevent message delivery at the target. To counteract this, BeRGeR has a mech-
anism of bypassing, or skipping, every green node. As the green nodes forward
the core along the border of the green face, they add the nodes that the core
visited to the packet. In addition, each green node splits the core by sending a
thread packet that skips the next green node k. This thread packet traverses the
union of k-blue and green faces.

A braid is a set of threads that carry matching messages in the same direction
(L or R). A braid matches a core if it contains threads that skip each node that
the core has visited and every such thread carries the same message as the core.
This way, if there is a faulty green node, at least one thread skips it. Therefore, if
a faulty node attempts to drop a packet or originate a forged packet, the target
does not collect a matching braid and core. Since the faulty node may be only
on the left or right side of the green face, a matching braid and core arrive on
the opposite side regardless of the faulty node’s actions.

Fig. 2. BeRGeR example operation. L core and R core traverse the green face F . The
second L thread, the d-thread, skips node d and traverses the union of the d-blue face
H, and the green face F .
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Refer to Fig. 2 for an illustration of the algorithm operation. The planar
graph shown in the picture complies with the Triconnectivity Assumption. Note
that greedy routing fails on this graph if the packet reaches node p since p is a
local minimum. Face F is green. Nodes s, c, d, e, t, k,m, p and h are adjacent to
F . These nodes are, therefore, green. Face H is the d-blue face adjacent to F .
Nodes c, a, g, e are d-blue since they are not green but adjacent to the d-blue face
H. Face E is the external face of the graph. The source sends two core packets
that traverse F : left core L and right core R. The source also sends a left and
a right thread that are not shown. The figure illustrates a single L thread that
is generated by c when c receives a core. That is, c splits this core and sends
thread that skips the next green node d. This thread traverses part of H and
then F to reach t.

Algorithm 1: BeRGeR variables and functions
1 constants
2 n // node coordinates

3 N // set of neighbor coordinates

4 {L,R} // left and right packet direction

5 variables
6 T // set of packets received by target

7 functions

8 nextNode(p, s, t, c, k)
9 M := {i ∈ N : i �= k and onThisSide(s, t, n, i)}

10 return i ∈ M : i is nearest to p in direction c ∈ {L,R}
// node selection direction L: counter-clockwise, R: clockwise

11 onThisSide(s, t, n, i)
// return true if the n-i and s-t line segments do not intersect

12 return ni ∩ st = ∅

13 invalid(p, m, s, t, k, �)
14 if k = p // sender is skipping itself

15 or (n = s and k = ⊥) // a core arrives at s
16 or n ∈ � then // traveled in a cycle

17 return true

18 else
19 return false

Algorithm Details. BeRGeR pseudocode is shown in Algorithms 1 and 2. Algo-
rithm 1 shows constants, variables and functions used in BeRGeR. Specifically,
each node maintains its own geometric coordinates n and the set of coordinates
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Algorithm 2: BeRGeR Actions
20 source node, input:
21 t // target

22 m // message

23 source node, initial action:
24 send(m, s, t,R, ⊥, 〈〉) → nextNode(t, s, t,R, ⊥) // new R core

25 send(m, s, t, L, ⊥, 〈〉) → nextNode(t, s, t, L, ⊥) // new L core

26k := nextNode(t, s, t,R, ⊥)
27 send(m, s, t,R, k, 〈s〉) → nextNode(t, s, t,R, k) // new R thread

28k := nextNode(t, s, t, L, ⊥)
29 send(m, s, t, L, k, 〈s〉) → nextNode(t, s, t, L, k) // new L thread

30 every node:
31 receive (m, s, t, c, k, �) from p −→
32 if invalid(p, m, s, t, k, �) then
33 return // drop invalid packets

34 if k = ⊥ then // if this is a core

35 �.append(p) // append sender to list of visited nodes

36 if n �= t then // packet is not at target

37 send(m, s, t, c, k, �) → nextNode(p, s, t, c, k) // forward packet

38 if k = ⊥ then // if received packet is core

39 k := nextNode(p, s, t, c, ⊥) // find next green node

40 if k �∈ � then // if k is unvisited

41 send(m, s, t, c, k, 〈n〉) → nextNode(p, s, t, c, k) // new thread

42 else // packet is at target

// green nodes neighboring t
43 coreR := nextNode(s, s, t, L, ⊥)
44 coreL := nextNode(s, s, t,R, ⊥)

// node(s) neighboring t next to green nodes; may be

identical

45 threadR := nextNode(s, s, t, L, coreR)
46 threadL := nextNode(s, s, t,R, coreL)

47 if k = ⊥ and c = R and p = coreR then
48 T .add(m, s,R, ⊥, �) // record R core

49 else if k �= ⊥ and c = R and p ∈ {coreR, threadR} then
50 T .add(m, s,R, k, 〈〉) // record R thread

51 else if k = ⊥ and c = L and p = coreL then
52 T .add(m, s, L, ⊥, �) // record L core

53 else if k �= ⊥ and c = L and p ∈ {coreL , threadL} then
54 T .add(m, s, L, k, 〈〉) // record L thread

55 if ∃�1, �2 : {(m, s, L, ⊥, �1), (m, s,R, ⊥, �2)} ⊂ T and �1 ∩ �2 = {s} then
56 deliver m // matching cores

57 else if ∃(m, s, c, ⊥, �) ∈ T : ∀i ∈ �, (m, s, c, i, 〈〉) ∈ T then
58 deliver m // matching core and braid of threads
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of its neighbors N . Constants L and R denote packet traversal direction. The
target node t maintains a set of packets T that it received. The target checks
T to see if the received packets satisfy message delivery conditions. Function
nextNode(p, s, t, c, k) uses the neighbor p of n to select the node according to
traversal direction c, either L or R. This selection excludes node k if it is skipped
by a thread, and it considers only the neighbors on the same side of st. This
includes s and t themselves. This check is done in function onThisSide(s, t, n, i).
This function ensures that algorithm packets do not use the edges that cross the
green face.

Algorithm 2 shows BeRGeR actions. There are two: the source node initial
action that originates the packets (see line 23), and the receipt action taken by
every node when it receives a packet (see line 31). As input, the source node s
takes target coordinates t and the message m to be delivered to it. In the initial
action, the source sends four packets: two cores and two threads. The cores go
in left and right directions along the green face. The threads skip the first green
nodes in the two directions.

The packet format is as follows: the message m; the source s, and target t;
traversal direction L or R; the node k to be skipped or ⊥ if it is a core packet;
and the list of visited nodes. A core packet starts with an empty list. This list
is only updated for cores. A thread carries its originator in the visited list.

Let us describe the packet receive action. First, the packet is checked for
validity (see line 13). The packet is dropped if it has traveled in a cycle, a core is
passing through s, or the sender p, is sending a thread that skips p. Otherwise, if
the received packet is a core, p is appended to the visited node list � and further
processing depends on whether the packet has arrived at the target.

If the packet recipient is not the target (see line 36), then the node forwards
the packet and, if it is a core packet, then the node also sends a thread skipping
the next green node, provided that green node is not in the visited list �.

If the packet recipient node is the target (see line 42), the recipient checks that
the packet comes from an expected node and then records the receipt of the core
or thread packet in T . Then, the target determines if message delivery conditions
are met. Specifically, if T has a record of two matching cores or a matching core
and a braid. Matching cores carry the same message in the opposite traversal
directions. Matching core and braid are a core and a set of threads such that
they are in the same traversal direction, carry the same message and, for every
node that the core visited, there is a thread that skips it. If the target receives
matching cores or a matching core and a braid, the target delivers the message
that they carry.

4 BeRGeR Correctness Proof

Lemma 1. A core packet traverses a single face of G−st and a thread skipping
node k traverses a single face of G − st − {k}.
Proof. By the design of the algorithm, a packet traverses a single face. In for-
warding a core packet, each node ignores the edges that intersect st. If the source
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originates a core packet, this packet traverses the green face of G − st. Similarly,
thread skipping k originated by the source traverses the union of the green and
the k-blue face of G − st − {k}. A faulty node may send a packet in some other
face, in which case it traverses that face. �

Fig. 3. Illustration for the proof of lemma 2. If left and right core paths share node v,
then v can be connected by a continuous curve that separates s from t. Hence, every
path from s to t contains v.

Let left core path be the left-hand-rule traversal path on the green face from
the source to the target. Similarly, right core path be the right-hand-rule traversal
path on the green face from s to t.

Lemma 2. Left and right core paths are internally node-disjoint.

Proof. We prove the lemma by contradiction. Suppose the opposite: the left and
right core paths share an internal node v. See Fig. 3 for illustration. In this case,
we can draw a closed curve that starts and ends in v and whose interior is inside
the green face. This curve separates the plane into two areas: one of them contains
s and the other t. This means that every path from s to t contains v. However,
the Triconnectivity Assumption states that G−st is three-connected. This means
that there must be at least three internally node-disjoint paths between s and t.
Hence, our initial supposition is not correct. Therefore, left and right core paths
must be internally node-disjoint. �

Let left core and right core are packets following left and right core paths
respectively.

Lemma 3 (Core validity). If the target receives a left core and a right core
carrying messages mlc and mrc respectively and mlc = mrc, then mlc = ms.

Proof The target receives a core packet from a node adjacent to the green face.
According to Lemma 1, such packet traverses the green face only. According
to Lemma 2, left and right core paths are disjoint. Since there is at most one
fault in the network, at least one of these paths is fault-free. Therefore, either
left or right core packets are forwarded by correct nodes only. In this case, it
carries the message sent by the source. Hence, if the target receives two identical
messages from both left and right core paths, this message is sent by the source.
�
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Lemma 4 (Thread validity). If a thread skips a green node k and reaches a
correct node, it is not originated by k.

Proof. Only the source and the faulty node may originate threads. We assume
that the source is correct. Therefore, we only have to consider the case of k
being faulty. Note that k may potentially originate a thread that skips k, or may
originate a core that splits into a thread that skips k. If k originates a thread
that skips itself, then, by the design of the algorithm (see line 14), the recipient
does not forward it.

Consider now the case where k originates a core. In this case, this core con-
tains k in the list of visited nodes �. Therefore, no correct node that receives
this core sends a thread that skips k (see line 40). In either case, the thread that
skips k is not originated by k. �

Fig. 4. Illustration for the proof of Lemma 5. If a blue face H, bypassing green node
k contains a green node v, that lies on the right core path, then v can be connected by
a continuous curve inside F ∪ H that separates s from t and, hence, every path from
s to t either contains k or v.

Lemma 5. The path traversed by a left thread does not contain any node of the
right core path. Similarly, the path traversed by the right thread does not contain
nodes of the left core path.

Proof. We prove the lemma for the left thread. The argument for the right thread
is similar.

Let us consider a left thread that skips some node k. According to Lemma 1,
the thread either traverses the left core path or the k-blue face. Due to Lemma
2, the right and left core paths are internally node-disjoint. Hence, the left core
path does not contain right core path nodes.

Let us now consider the nodes adjacent to the k-blue face. We prove this part
by contradiction. Suppose the opposite: there is a node v that is adjacent to the
k-blue face but lies on the right core path. We show that in this case all paths
from s to t contain either v or k. Specifically, we show that the path that does
not contain k, goes through v.

Indeed, removing node k and adjacent edges merges the green face and the
k-blue face. See Fig. 4 for illustration. In this figure, F is the green face and H
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is the k-blue face. In this case, inside this joint face, we can draw a closed curve
that starts and ends in v. Therefore, any path from s to t that does not contain
k, has to go through v. That is, all paths from s to t contain either v or k.

However, the Triconnectivity Assumption requires that there are three inter-
nally node-disjoint paths from s to t. Hence, our supposition is incorrect and the
path traversed by the left thread, either along the left core path or along the
k-blue face, does not contain a node on the right core path. �

Recall, that a braid is a set of threads with the same direction, left or right,
and carrying the same message. A braid matches a core packet c if (i) c and
the braid carry the same message and (ii) for every node i that c carries in its
visited list � there is a thread in the braid that skips i.

Lemma 6 (Braid validity). If the fault is adjacent to the green face and the
target receives a core and a matching braid carrying mb, then mb = ms.

Proof. We prove the lemma for the left direction. The argument for right direc-
tion is similar. The fault may be on the left side of the green face or on the
opposite side. We consider these cases separately.

Let the target receive a left core and matching left braid while the fault is on
the right side. In this case, according to Lemma 2, all the nodes of the left core
path are correct. By the design of the algorithm (see line 47), the target accepts
a core packet only if it comes from a neighbor adjacent to the green face. Due
to Lemma 1, this core traverses the green face only. Since the fault is on the
right core path, this left core was forwarded by correct nodes only. Therefore it
carries ms.

Let us now consider the case where the target receives a left core and a
matching left braid while the fault is also on the left core path. Let f be the
faulty node; that is, the faulty node is on the received core path. A correct
recipient that forwards the packet records the packet sender in the visited list
� of the packet. Therefore, f is present in � of the core packet that the target
receives. Since the target receives a braid that matches this core packet, it also
receives a thread that skips f. According to Lemma 4, f may not originate such
a thread. Hence, the thread that skips f is originated by the source so it carries
ms. Since this thread is in the braid that carries the same message and matches
the core message, they all carry ms. �

Lemma 7. (Liveness) The target eventually receives either (i) matching left and
right core packets or (ii) a matching core and a braid.

Proof. If the faulty node is not adjacent to the green face, then both matching
left and right core packet reach the target.

Let us examine the case of a faulty node is adjacent to the green face. This
means that it lies on a core path. Assume, without loss of generality, that the
node is on the right core path. Then, according to Lemma 2, the left core path
is fault-free. Moreover, due to Lemma 5 the paths of all the left threads are also
fault-free. That is, in case the faulty node is on the right core path, the left core
and a matching left braid reach the target. �
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Lemma 8 (Termination). Every packet is forwarded a finite number of times.

Proof According to Lemma 1, every packet traverses a single face in either G−st
or G − st − {k}. The originator of the packet is recorded in the visited list � of
the packet. When received, the originating node drops such a packet. That is, if
the packet is not dropped by the source, target or the faulty node, it is dropped
by the originating node once the packet traverses the entire face.

The faulty node may record a spurious packet originator in �. However,
according to Lemma 1, this packet traverses some face, arrives back to the faulty
node, where it is assumed to be dropped.

In a finite graph, this means that every packet is forwarded a finite number
of times. �

Theorem 1. BeRGeR: Byzantine Robust Geometric Routing algorithm solves
the Reliable Message Delivery Problem with a single Byzantine node in a planar
graph subject to the Triconnectivity Assumption.

Proof. In BeRGeR, the target delivers message mt in two cases: either it receives
two matching core packets or it receives a matching core packet and a braid.
According to Lemma 3, if the target receives matching core packets, the packets
carry the message sent by the source. According to Lemma 6, if the target
receives a matching core and a braid, they carry the source message also. That
is, the target delivers only the message sent by the source. Hence, BeRGeR
satisfies the Validity Property of the Reliable Message Delivery Problem.

Moreover, Lemma 7 guarantees that the target eventually receives matching
cores or a matching core and a braid. That is, BeRGeR guarantees that a message
is delivered by the target, which means that the algorithm also satisfies the
Liveness Property.

Lemma 8 shows that BeRGeR satisfies the Termination Property as well. �

5 Constant Packet Size Extension and Complexity
Estimate

Constant Packet Size Extension. In BeRGeR, a core packet carries the
path that it travels, making the packet size potentially linear with respect to
the network size. However, the modification to constant size cores is relatively
straightforward. This modification is achieved at the expense of stateless packet
forwarding. For that, the sender transmits the message in numbered fixed-size
packets to the neighbor. The neighbor receives the packets and reassembles the
message. If any of the packets are missing, the whole message is discarded. Since
we assume no packet loss, a correct node transmits all packets. The faulty node
either transmits the packets or fails to do so. The latter is equivalent to no packet
transmission of the original algorithm. The correctness of the original BeRGeR
is preserved.
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Algorithm Message Complexity. Let us analyze the message complexity of
BeRGeR during its fault-free operation. Let N and E be the respective number
of nodes and edges in graph G. In the core path, each node may appear at
most once. Hence, the length of the core path is in O(N). Each core message
transmission may be separated into O(N) constant-size packets. Since the path
of the core message is in O(N), the total number of packets for a single core is
in O(N2).

For each node on the core path, the algorithm generates a thread. Each
thread travels at most E edges and the threads are constant size. Therefore, the
number of thread packet transmissions generated by a single core is in O(EN).
There are left core and right core. Hence, the total number of sent packets is
in O(2N2 + 2EN). In a planar graph, E ∈ O(N) by Euler’s formula. Thus, the
overall BeRGeR message complexity is in O(N2).

6 Future Work

As described in this paper, BeRGeR is a unicast algorithm. To achieve Byzantine
fault tolerance, it employs the same message concurrency techniques that are
used to solve geocasting [43] and multicasting [41]. We expect BeRGeR can be
adapted in a straightforward manner to produce Byzantine-robust solutions to
these two problems.

BeRGeR requires the Triconnectivity Assumption to operate correctly. It
states that the subgraph G − st needs to be 3-connected. In general, to enable
fault tolerant transmission, any graph G needs to be (2x + 1)-connected, where
x is the maximum number of faults. However, we are unsure whether this needs
to hold for the subgraph G − st. Trying to relax this assumption would be an
interesting research pursuit.

Byzantine-robust routing needs the communication graph to be three-
connected. The maximum planar graph connectivity is 5. Thus, potentially, such
a graph may enable a geometric routing algorithm that can tolerate up to 2
Byzantine faults. Finding such an algorithm is another research challenge.

BeRGeR assumes planar subgraph for its operation. There are several arti-
cles that extend geometric routing to non-planar graphs [44–46]. It would be
interesting to investigate whether these techniques are applicable to BeRGeR.

It is notoriously difficult to do performance evaluation of Byzantine tolerant
algorithms as Byzantine behavior is difficult to simulate. Indeed, rather than
erratically dropping messages or skipping steps, the faulty nodes may collude
to cause maximum damage at the weakest point of the algorithm [47]. However,
it would be interesting to compare the performance of BeRGeR to non-tolerant
algorithms to evaluate the expense of adding fault-tolerance to geometric routing
algorithms.
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