
QUANTAS-WACOFA

QUANTITATIVE USER-FRIENDLY ADAPTABLE
NETWORKED THINGS ABSTRACT SIMULATOR

WITH A COUPLE OF FEATURES ADDED

A thesis submitted to
Kent State University in partial

fulfillment of the requirements for the
Nesterenko-Certified CS Researcher

Qualification

by
Zaz Brown
July 2023

1 Dedication

To Prof. Nesterenko, who runs a research boot camp more challenging than
military boot camp. Who somehow managed to extract 2 years of my life in
a mere 3 weeks.

Most importantly, I dedicate this work to my cat, Tailwind, who has
stood by me through these hard weeks and provided me with love and sup-
port. And also to my wife, who fed the cat.

1

Contents

1 Dedication 1

2 Abstract 4

3 Implementation 4
3.1 Add infrastructure to “infect” nodes 4
3.2 Add visualization infrastructure 4

3.2.1 Git supermodule for analyzing results 4
3.3 Change benchmarking measure 4
3.4 Minor implementation details 5

3.4.1 Add multicast for specified proportion of peers 5
3.4.2 Next: Change output file extension: .txt → .json . . 5
3.4.3 Next: Automatic linting 5

4 Abandoned approaches 6
4.1 Infections as higher-order functors 6
4.2 Infections accepting callbacks 7

5 Results 7
5.1 Latency . 7

5.1.1 Edge cases . 9
5.2 Throughput . 10

5.2.1 Edge cases . 11
5.3 With censorship . 11
5.4 With equivocation . 13

6 Unresolved questions 14
6.1 Is [&] an appropriate way to capture this? 14
6.2 Is passing this best practice? 14
6.3 Unnecessary looping? . 14

7 Suggestions for Future Research 15
7.1 Allow taking JSON on stdin 15
7.2 Move JSON input out of Quantas repository 15
7.3 Deal with peers symmetrically 15
7.4 Output file management . 15

7.4.1 Automatic output file generation 16
7.5 Build a Domain-Specific Language 16
7.6 Make every peer log . 16

2

7.7 Community engagement . 16
7.7.1 Don’t display the main repository as a fork 16
7.7.2 Git authors should be individuals 17
7.7.3 Project discoverability 17

7.8 Simplify logging: log everything 17
7.9 Unit testing . 17
7.10 Latin hypercube sampling . 18

7.10.1 Alternatively, replace PRNG with QRNG 18

3

2 Abstract

This paper documents some additions to Quantas[3]. Primarily, the ability
to introduce Byzantine behavior via “infections”. An infection is simply a
function that modifies a peer, and can be specified in the config file. An
“infected” node is simply a node with modified behavior. It is no longer
guaranteed to be correct, but it may be correct.

3 Implementation

3.1 Add infrastructure to “infect” nodes

Infections were originally implemented as higher-order functors (see 4.1), but
now they are simply functions that accept a Peer as argument and modify
the methods of that peer. To achieve this, new function pointers were added
to Peer that wrap existing functionality.

3.2 Add visualization infrastructure

I created a Python script that will automatically generate plots based on
Quantas’ JSON output. In the future, it would make sense to have Python
generate the JSON input also, as that is cumbersome (see 7.2).

3.2.1 Git supermodule for analyzing results

I factored out my new code for visualizing results into a git supermodule,
meaning that it is a git repository that will contain Quantas as a submodule.
This layer of abstraction allows both Quantas developers and end-users to
fork the visualization repository and make changes to that without those
changes being intertwined with the changes to Quantas itself.

Once both Quantas and the visualization repository are both stable after
this flurry of activity, I plan to add Quantas as a submodule to the visual-
ization repository.

3.3 Change benchmarking measure

latency is not updated if commits do not occur. This caused some prob-
lems as you can see in Results. Nghia switched to throughput-based bench-
marking, which seems to work more smoothly. See 7.8 for ideas for further
improvements.

4

3.4 Minor implementation details

3.4.1 Add multicast for specified proportion of peers

I improved upon Rachel Bricker’s randomMulticast that sends messages to
a random number of peers. There is now an optional parameter to specify
the proportion of peers you would like to send a message to.

// Multicasts to a random sample of neighbors without repetition.

// Sample size is a random uniform distribution between 0 and neighbours
template <class message>
void NetworkInterface<message>::randomMulticast(message msg) {

randomMulticast(msg, -1);
}

// Same, but sample size is number of neighbours * p, rounded down.
template <class message>
void NetworkInterface<message>::randomMulticast(message msg, float p) {

int amountOfNeighbors;
if (p < 0)

amountOfNeighbors = uniformInt(0, _neighbors.size());
else

amountOfNeighbors = _neighbors.size() * p;

// previous implementation
}

3.4.2 Next: Change output file extension: .txt → .json

This makes it more obvious what format the output is in. Thanks to Mitch
for the suggestion.

3.4.3 Next: Automatic linting

Fix all whitespace errors and set up automatic linting using a git pre-commit
hook.

5

4 Abandoned approaches

4.1 Infections as higher-order functors

In my first implementation, I created an Infection class which created higher-
order functors, but this seemed to introduce complexity for no benefit. I
switched Infections to simply being functions that accept callbacks instead.

#include <functional>
#include "Peer.hpp"

using std::function;

namespace quantas {

template<class type_msg>
class Infection {

function<void(Peer<type_msg>*,function<void()>)> _infection;
// allow infections that don’t take performComputation as an argument
function<void(Peer<type_msg>*)> _fn;

public:
Infection(function<void(Peer<type_msg>*,function<void()>)> fn) :

_infection(fn) {}
Infection(function<void(Peer<type_msg>*)> fn) : _fn(fn) {}

/**
* An infection is a higher-order functor:
*
* @param the peer that we are performing computation on
* @param the original performComputation function
* @return a modified version of performComputation
*/

void operator()(Peer<type_msg>* peer, function<void()> performComputation) {
if (_infection != nullptr)

_infection(peer, performComputation);
else

_fn(peer, performComputation);
}

};

}

6

4.2 Infections accepting callbacks

My next approach was to code an infection as replacement methods that
would accept, as a callback, the original method that it would replace. I
abandoned this approach in favor of infections as functions that modify a
peer. This seems to be the most natural approach, and one that is intuitively
easy to explain.

5 Results

Unless stated otherwise, 1,000 simulations were run using PBFTPeer for both
the control case (where all peers are correct indefinitely) and the Byzantine
case (where peers are infected at time 200). All simulations were run with a
delay of 10.

Plot symbol Meaning
Semi-transparent blue dot Results of a simulation of all-correct peers
Semi-transparent red dot Results of a simulation including “infected” peers
Blue shaded region 95% confidence interval
Red shaded region 95% confidence interval

5.1 Latency

I began by using a crash infection that simply halts a peer and the pre-
programmed latency log of the PBFTPeer. Latency is a self-report from
peer 0 of the time since the last commit. This has the drawback that it logs
average cumulative latency. Hence the output plot is not trivial to interpret:
sudden jumps in latency appear as a transition from a constant function to
a hyperbolic one, which is exactly what we see below.

7

Note that the patterns you see are not plotting artifacts, they are the
actual cumulative averages of each simulation. Cumulative averaging of in-
tegral changes results in the hyperbolic geometry that you see.

8

5.1.1 Edge cases

Here, infected nodes flatline because crashed nodes stop reporting the la-
tency.

9

5.2 Throughput

Next, I switched to measuring throughput, which is the total number of
commits that have occurred (according to peer 0).

10

5.2.1 Edge cases

Using 100 simulations instead of 1,000:

Interestingly, we see that pBFT is failing for 33/100 nodes crashing. This is
surprising because this is the most benign kind of fault and pBFT is designed
to handle n−1

3 faults, where n is the number of peers[1].

5.3 With censorship

Note: From this point forward, all plots are with 12 simulations for each of
control and infected cases.

11

Applying censorship resulted in no statistically significant change in through-
put up to 99/100 nodes. Censoring the final node caused the system to fail.
This could be related to view changes not being implemented. As the code is
written now, peer 0 is hard-coded to be the view leader, and my code infects
nodes in reverse order, leaving peer 0 until last (the reason for this is peer 0
is also conventionally the node that handles logging).

12

5.4 With equivocation

Next I tested equivocating on the commit message by sending the commit
to a random selection of peers (see 3.4.1) and not sending it to the rest.
With more than 45 equivocating peers, this began to slow down the network
drastically.

13

6 Unresolved questions

6.1 Is [&] an appropriate way to capture this?

std::function<void(message)> send = [&] (message msg) {
NetworkInterface<message>::broadcast(msg);

};

6.2 Is passing this best practice?

virtual void defaultComputation () = 0;
std::function<void(Peer*)> computationPerformer = [] (Peer* peer) {

peer->defaultComputation();
};
void performComputation () { computationPerformer(this); };

6.3 Unnecessary looping?

Is looping over _neighbours in the below code necessary, or can it be re-
moved? Is there any reason sending a message with a target that doesn’t
exist would cause issues?

// Send to a single designated neighbor
template <class message>
void NetworkInterface<message>::unicastTo(message msg, long dest){

for(auto it = _neighbors.begin(); it != _neighbors.end(); it++){
if(*it == dest) {

Packet<message> outPacket = Packet<message>(-1);
outPacket.setSource(id());
outPacket.setTarget(*it);
outPacket.setMessage(msg);
_outStream.push_back(outPacket);

}
}

}

14

7 Suggestions for Future Research

7.1 Allow taking JSON on stdin

The convention with Unix-style programs is to use program - to mean: In-
stead of reading from the file represented by the first argument, read from
stdin instead. This will make it more convenient for programs that use
Quantas to feed it JSON they generated. Instead of writing a file and giving
that to Quantas, or passing a file by file descriptor, which is not portable,
programs will have the third option of passing data via stdin.

7.2 Move JSON input out of Quantas repository

It is not conventional to store the input to a program in the same repository
as the code for that program. I suggest removing the Makefile entries for
different program inputs and moving the JSON input files into the supermod-
ule, Quantas-analysis. This allows end-users to develop version-control their
own analysis independently of Quantas core development, allowing seamless
updates of Quantas.

7.3 Deal with peers symmetrically

If we are able to refactor Quantas in a way that we never subscript peers be-
fore they are randomly shuffled, it could provide benefits to user by allowing
people to hack on Quantas more easily. For example, when I first started
building Byzantine peers, I found it more convenient to make the first X
peers Byzantine. This is only a safe approach if nothing else in the codebase
picks a range of peers deterministically. Unfortunately for me, _peers[0] is
hard-coded as indispensable.

_peers[0]->endOfRound(_peers);

7.4 Output file management

First, I created results to keep all of my results in one place. Then I
created various subdirectories to manage results for different parameters.
Then I modified Quantas and moved results to old/results0 because I
wanted to keep a copy of the results from before I modified Quantas. It
would be better if Quantas handles all of this administrative work.

We could do this simply by storing results in e.g.
results/v1.0/pBFT/delay10/rounds400/peers100/infect10. This seems

15

like a convoluted way of doing things, but it actually reduced duplication
of computation while experimenting with Quantas. A user may want to try
many different approaches before deciding on the one they want to present,
by which point their output files have become an organizational nightmare.
This would also eliminate the chance of user error in naming the output
files; currently it is easy to set rounds: 400 in the config file, but forget to
change the output filename to reflect that parameter.

This approach could be taken even further to eliminate JSON input files
altogether and have the entire input state represented in the filepath. This
would allow us to avoid accidental duplication of work by checking the mtime
on the files, like make does. A hybrid option would also be possible, where a
JSON file exists in pBFT/ and those options are added to all simulations.

7.4.1 Automatic output file generation

We could even take this one step further and add a filesystem watcher so
that, when an empty .json file is created in a subdirectory, Quantas adds
it to a queue to generate output for it.

7.5 Build a Domain-Specific Language

When I first created a way to infect nodes, I hard-coded into Simulation.hpp
I then moved this functionality into the config file, but if we keep doing this
for every feature, the complexity of the config files will balloon. It might be
better to make the config files Turing-complete, i.e. make a DSL.

I expect that making a DSL will lead to simplifications of Quantas and
could even allow techniques from compiler optimization to be used to speed
up Quantas.

Note that a DSL is not compatible with the previous suggestion to move
all configuration to the file path, but it is compatible with the hybrid ap-
proach of storing some configuration in the file path.

7.6 Make every peer log

At the moment, logging is done from the perspective of one peer only.

7.7 Community engagement

7.7.1 Don’t display the main repository as a fork

GitHub displays notices at the top of the Quantas repository:

16

forked from khood5/distributed-consensus-abstract-simulator

This branch is 124 commits ahead of khood5:master.

This gives the impression that QuantasSupport/Quantas is not the canonical
source for Quantas. This can be easily fixed by contacting GitHub customer
support.

7.7.2 Git authors should be individuals

Having QuantasSupport registered as a user rather than an organization and
then using that anonymous account to commit to the repository is highly
irregular. This can cause community trust issues due to not knowing which
individuals authored each part of the project. Quantas contributors should
be informed that using a full name for FOSS contributions is the norm.

The Quantas repository can be moved under an organization, such as
QuntasSim in a way that automatically redirects QuantasSupport/Quantas
→ QuantasSim/Quantas.

7.7.3 Project discoverability

Use tags. Create a banner for the repository. Create a logo.

7.8 Simplify logging: log everything

The way logging is currently done could be simplified: We could simply log
every event and the time at which it occurred. Currently, pBFT outputs
a time-series of throughputs, which is very easy to work with, but it is
not the natural format for this data. We have a number of different events
occurring on different rounds. If we were to simply record pairs (time, event)
that would allow more flexibility when it comes to analyzing the data. The
parsing is more complex than a time series, but libraries exist that will handle
that for you. This avoids having to modify the code for the computation and
re-run the simulation, which is expensive.

7.9 Unit testing

Once I had a working visualization system, I would use that after each change
I made. I would visually check that the plot generated looked the same as
the previous one to ensure I hadn’t made any coding errors. It would be
better to automate this. You could have both a light test suite, to briefly

17

check correctness before each commit, and a more extensive test suite that
runs automatically on GitHub when a pull request is submitted.

7.10 Latin hypercube sampling

We could use Latin hypercube sampling to reduce the number of tests needed
for a desired precision. With LHS, Precision is proportional to 1/n instead
of 1/

√
n. LHS is an extension of stratification that works by replacing each

type of random decision with a dimension in a Latin Hypercube. This may
be problematic in our case, though, as generation of high-dimensional Latin
hypercubes is hard. One solution is dimensionality reduction: Pick only your
most correlated categories of decisions and use LHS for those categories,
while using random number generation for the rest. [2]

7.10.1 Alternatively, replace PRNG with QRNG

A simpler solution may be to replace most instances of pseudorandom num-
ber generators with quasirandom number generators. QRNGs produce low-
discrepancy sequences that increase uniformity of the resultant sequence.

References

[1] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Toler-
ance”. In: Proceedings of the Third Symposium on Operating Systems
Design and Implementation. OSDI ’99. New Orleans, Louisiana, USA:
USENIX Association, 1999, pp. 173–186. isbn: 1880446391.

[2] G Damblin, M Couplet, and B Iooss. “Numerical studies of space-filling
designs: optimization of Latin Hypercube Samples and subprojection
properties”. In: Journal of Simulation 7.4 (Nov. 2013), pp. 276–289.
issn: 1747-7786. doi: 10.1057/jos.2013.16. url: http://dx.doi.
org/10.1057/jos.2013.16.

[3] Joseph Oglio et al. “QUANTAS: Quantitative User-friendly Adaptable
Networked Things Abstract Simulator”. In: Proceedings of the 2022
Workshop on Advanced tools, programming languages, and PLatforms
for Implementing and Evaluating algorithms for Distributed systems
(July 2022). doi: 10.1145/3524053.3542744. url: http://dx.doi.
org/10.1145/3524053.3542744.

18

https://doi.org/10.1057/jos.2013.16
http://dx.doi.org/10.1057/jos.2013.16
http://dx.doi.org/10.1057/jos.2013.16
https://doi.org/10.1145/3524053.3542744
http://dx.doi.org/10.1145/3524053.3542744
http://dx.doi.org/10.1145/3524053.3542744

	Dedication
	Abstract
	Implementation
	Add infrastructure to ``infect'' nodes
	Add visualization infrastructure
	Git supermodule for analyzing results

	Change benchmarking measure
	Minor implementation details
	Add multicast for specified proportion of peers
	Next: Change output file extension: .txt → .json
	Next: Automatic linting

	Abandoned approaches
	Infections as higher-order functors
	Infections accepting callbacks

	Results
	Latency
	Edge cases

	Throughput
	Edge cases

	With censorship
	With equivocation

	Unresolved questions
	Is [&] an appropriate way to capture this?
	Is passing this best practice?
	Unnecessary looping?

	Suggestions for Future Research
	Allow taking JSON on stdin
	Move JSON input out of Quantas repository
	Deal with peers symmetrically
	Output file management
	Automatic output file generation

	Build a Domain-Specific Language
	Make every peer log
	Community engagement
	Don't display the main repository as a fork
	Git authors should be individuals
	Project discoverability

	Simplify logging: log everything
	Unit testing
	Latin hypercube sampling
	Alternatively, replace PRNG with QRNG

