BeRGeR Bloopers

Material not included in the paper

Brown Zaz

Department of Computer Science, Kent State University, Kent, OH 44242, USA
zbrown@cs.kent.edu

Redundant routing. Without cryptography, deterministically delivering a
message from s to t requires that either s and ¢ are neighbors (the trivial case
which, for the purposes of this paper, we ignore) or that there exist 2z + 1
disjoint paths between s and t. This means for any deterministic Byzantine-
resistant routing algorithm to work for all pairs of nodes, there must be 2x + 1
disjoint paths between each pair of nodes in the network. By Menger’s theorem,
this is equivalent to requiring the network be (22 + 1)-connected.

In spite of the necessity of 2x + 1 disjoint paths, the key insight to this
routing algorithm is that packets do need to traverse these disjoint paths. If you
have more than 2x + 1 packets, it is not necessary that the paths they take be
pairwise disjoint; the more general condition that they are collectively disjoint
is sufficient. Intuitively, this means that the union of the paths traversed by the
nodes must contain 2z 4 1 disjoint paths, but the packets do not need to follow
those disjoint paths. The paths the packets take may overlap. When the paths
overlap, but collective disjointness is maintained, this is called braiding.

It is easier to find collectively disjoint paths than pairwise disjoint paths
because collective disjointness (CD) is less restrictive than pairwise disjointness
(PD), as can be seen from their respective termination conditions:

(PD)
(CD)

Ji, g Lomy = my, pi N pj =0
Ji,jokye tmi=mij=mp=---, p;Np;NppN---=10

A
A
W\
\/

-~

N

b

2 Old Pseudocode

Algorithm 1: BeRGeR variables and functions

1 functions

2 nextNode(p, s,t,c, k)
3 loop for i € N starting with p in direction ¢ € {L,R}

4 if i # k and onThisSide(s,t,n,i) then
5 L return ¢
6 return | // no next node found

3 Old Introduction

We have a network (graph), G, of nodes that know only the current packet, their
position, and the set of their neighbors’ positions. They do not have space for
routing tables, nor space to store information about packets that pass through
them. The goal is to route a message from s to ¢ such that ¢ will decode the
correct message even in the presence of 1 node that behaves arbitrarily (i.e. is
Byzantine).

The simplest solution without a Byzantine node would be to greedy route;
at each step going to the node geometrically closest to t. However, local minima
result in this naive algorithm not reaching ¢. A guaranteed solution is to include
draw a line through s and ¢ (encoded in the packet), and then route along all
edges of any face that intersects the s —t line. This was done in Concurrent Face
Routing [?] and is adapted here to generate 2 disjoint paths, or “cores”, that
form the core of our braided routing algorithm.

The state of the art in Geometric routing is GOAFR+ [?] where they route
packets within an ellipse, increasing the size of the ellipse if progress is not made.
They demonstrate practical efficiency and prove their algorithm is asymptoti-
cally optimal in the worst-case: O(p?), where p is the shortest path length from
s to t, and assuming a unit-disk graph (UDG). We attempted something similar,
but were stymied by networks where the external face intersected the s — ¢ line
in multiple places; we may attempt this again assuming no such intersections.

Finally, [?] proves a correspondence between interactive consensus condi-
tions (ICCs) and error-correcting codes (ECCs). But I believe the ICCs apply
to broadcast networks (complete graphs), so are not directly applicable here.

4 Definitions

proximal sender the node the current packet was received from

st the line segment between s and ¢

G the graph

G — st the graph with edges that intersect st removed

superface the union of faces that intersect st

green node a node adjacent to the superface. This includes s and ¢.

core a packet that traverses the superface using either right-hand-rule (R) or
left-hand-rule (L)

braid a packet that is routed exactly as a core packet, except it skips a single
node, k, indicated in the packet

braid chain a set of braids that collectively skip each node a core packet
visited

matching packets packets that contain the same m,s,t

There are two kinds of packets: Cores and braids. Both packets contain:

m the message, comparable for equality
s the ultimate source of the message
t the ultimate target of the message
¢ the chirality of the packet: R or L

In addition, cores contain:

¢ the set of nodes the packet has visited
And braids contain:

k the node the packet should block/skip

So cores have size proportional to the core path length, while braids are
constant size (logn bits). The fact that packets contain chirality means that
when a packet arrives at a node, it is not only associated with an edge, but also
a face.

Delivery Condition 1 Target receives matching core R and L packets

Delivery Condition 2 Target receives a core and matching braids that skip
each node in £

5 Mathematical Formalism

Formally, each node, except for 1, uses the same routing algorithm, f, that takes
a message, m € M, the proximal source of the packet, v_1, the current node’s
position v, and the set of the current node’s neighbors’ positions V and returns
a set of (possibly modified) packets along with the node to pass each packet to:

fimyv_1,vo, V= {(me M,v):¥Ym,veV}

Alternatively, you can imagine that there is a copy of G, G,,, for every m.
We will call the union of these Gj;. Changing a message from mj to ms is now
expressed as moving it from G, to Gp,,. Now f forms a path-sensitive directed
graph:

fivoi,ve,vir = P(Vu)

Which is a directed graph, modified to be sensitive to the proximal source of
the packet. More formally, a directed graph, G, is defined by an ordered pair of
a set of vertices and set of arches (V, A), and an arch is defined as an ordered
pair of vertices. I define a path-sensitive graph similarly, but with A being an
ordered *triple* of vertices.

It is critical that this graph is acyclic, otherwise our algorithm will not ter-
minate.

Our solution only uses very weak assumptions. E.g. We only use the packet
for the s—t line, chirality (whether the packet will take the next available R node,
or L node), and a single excluded node. So their may be some way to simplify
the above to a directed graph. We only use the positions of nodes (along with
the s — ¢ line encoded in the packet) to exclude neighbors on the other side of
the source-target line. So we reduce all the GPS information down to 1 bit per
edge.

	BeRGeR Bloopers

